According to new research, an invisible “mirror world” of particles interacting with our world only via gravity may be the key to solving a great mystery in cosmology today – Hubble constant problem.
The Hubble constant It is the current rate of expansion of the universe. Predictions for this rate – from the Standard Model of cosmology – are noticeably slower From the rate our local measurements have found the most accurate. This is amazing inconsistency inconsistency inconsistency She is one of many cosmologists trying to solve it By changing our current cosmological model. The challenge is to do this without spoiling the agreement between the standard model predictions and many other cosmic phenomena, such as the cosmic microwave background. Determining whether such a cosmic scenario exists is a question that researchers, including Francis Jan Sir Racine, associate professor in the Department of Physics and Astronomy at the University of New Mexico, VJ, and Lloyd Knox at the University of California, Davis have been working to answer.
cosmology It is the scientific study of the large-scale properties of the universe as a whole. It seeks to use the scientific method to understand the origin, evolution, and ultimate fate of the entire universe. Like any field of science, cosmology involves the formation of theories or hypotheses about the universe that make specific predictions of phenomena that can be tested through observations. Depending on the outcome of the observations, theories will need to be abandoned, revised, or expanded to accommodate the data. so called The Big Bang Theory It is the dominant theory regarding the origin and evolution of the universe.
to me[{” attribute=””>NASA, cosmology is the scientific study of the large-scale properties of the universe as a whole. Cosmologists study concepts such as dark matter, and dark energy and whether there is one universe or many, sometimes called a multiverse. Cosmology entails the entire universe from birth to death with mysteries and intrigue at every turn.
Now, Cyr-Racine, Ge, and Knox have discovered a previously unnoticed mathematical property of cosmological models which could, in principle, allow for a faster expansion rate while hardly changing the most precisely tested other predictions of the standard cosmological model. They found that a uniform scaling of the gravitational free-fall rates and photon-electron scattering rate leaves most dimensionless cosmological observables nearly invariant.
“Basically, we point out that a lot of the observations we do in cosmology have an inherent symmetry under rescaling the universe as a whole. This might provide a way to understand why there appears to be a discrepancy between different measurements of the Universe’s expansion rate.”
The research, titled “Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant,” was published recently in the journal Physical Review Letters.
This result opens a new approach to reconciling cosmic microwave background and large-scale structure observations with high values of the Hubble constant H0: Find a cosmological model in which the scaling transformation can be realized without violating any measurements of quantities not protected by the symmetry. This work has opened a new path toward resolving what has proved to be a challenging problem. Further model building might bring consistency with the two constraints not yet satisfied: the inferred primordial abundances of deuterium and helium.
If the universe is somehow exploiting this symmetry researchers are led to an extremely interesting conclusion: that there exists a mirror universe very similar to ours but invisible to us except through gravitational impact on our world. Such “mirror world” dark sector would allow for an effective scaling of the gravitational free-fall rates while respecting the precisely measured mean photon density today.
“In practice, this scaling symmetry could only be realized by including a mirror world in the model — a parallel universe with new particles that are all copies of known particles,” said Cyr-Racine. “The mirror world idea first arose in the 1990s but has not previously been recognized as a potential solution to the Hubble constant problem.
“This might seem crazy at face value, but such mirror worlds have a large physics literature in a completely different context since they can help solve important problem in particle physics,” explains Cyr-Racine. “Our work allows us to link, for the first time, this large literature to an important problem in cosmology.”
In addition to searching for missing ingredients in our current cosmological model, researchers are also wondering whether this Hubble constant discrepancy could be caused in part by measurement errors. While it remains a possibility, it is important to note that the discrepancy has become more and more significant as higher quality data have been included in the analyses, suggesting that the data might not be at fault.
“It went from two and a half Sigma, to three, and three and a half to four Sigma. By now, we are pretty much at the five-Sigma level,” said Cyr-Racine. “That’s the key number which makes this a real problem because you have two measurements of the same thing, which if you have a consistent picture of the universe should just be completely consistent with each other, but they differ by a very statistically significant amount.”
“That’s the premise here and we’ve been thinking about what could be causing that and why are these measurements discrepant? So that’s a big problem for cosmology. We just don’t seem to understand what the universe is doing today.”
Reference: “Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant” by Francis-Yan Cyr-Racine, Fei Ge and Lloyd Knox, 18 May 2022, Physical Review Letters.
DOI: 10.1103/PhysRevLett.128.201301
“Twitter practitioner. Beer evangelist. Freelance gamer. Introvert. Bacon aficionado. Webaholic.”
More Stories
A long solar flare just erupted from the sun. watching video.
Mastodon’s fang reveals migration patterns in North America
Gaia probe reveals stellar DNA and unexpected ‘stellar earthquakes’ | space